## **RHIC Machine Status**

### Angelika Drees



RHIC AGS User Group Meeting 23 January 2004

### Content

- Run–4 start–up and ramp–up
- Run–4 Luminosity development
- Current typical running conditions
- Improvements
- Luminosity limitations
- Summary

# Run- 4 star- up and ramp- up

- 12/01/03 2 weeks of start—up begin (24h/day machine development)
- 12/15/03 2 weeks of ramp—up begin (owl shift for experiments)
- 12/31/03 Physics Run started

#### **Comments:**

- Ramp-up period 1 week shorter than planned
- Total of 8 days with larger problems during start-up/ramp-up
- Started Physics Run with
  - stores above design luminosity
  - $\sim 40 (\mu b)^{-1} / \text{week (last week in Run} 2 \text{ had } 24 (\mu b)^{-1})$

[luminosity numbers denote delivery to Phenix/Star]

## Run- 4 luminosity evolution

Delivered 182.5 ( $\mu$ b)<sup>-1</sup> to Phenix [109.8] Star ×0.9 72.7 ( $\mu$ b)<sup>-1</sup> last week [ 42.4] Phobos ×0.3 Brahms ×0.5?



## Projected Run-4 Au-Au Luminosity Evolution



Experimental target luminosity > 3x higher than achieved in last Au–Au run with the same time!

## Run- 4 current typical running conditions

|  | Quantitiy            | Unit                                              | Value     | Comment                                                     |
|--|----------------------|---------------------------------------------------|-----------|-------------------------------------------------------------|
|  | Bunch intensity      | 10 <sup>9</sup> Au ions                           | 1.0 / 0.7 | Blue / Yellow, injected                                     |
|  | Number of bunches    |                                                   | 61        | per ring                                                    |
|  | Initial ZDC rates    | kHz                                               | 8.0       | at Phenix and Star, 1/3 at Brahms and Phobos                |
|  | Initial luminosity   | 10 <sup>26</sup> cm <sup>-2</sup> s <sup>-1</sup> | 8.0       | at Phenix and Star, 1/3 at Brahms and Phobos                |
|  | Luminosity lifetime  | hrs                                               | 2.5       | for first 3 hours of store, larger thereafter               |
|  | Time between fills   | hrs                                               | 5.0       | for uninterupted production                                 |
|  | Optimum store length | ı hrs                                             | 3.8       | to maximize average luminosity, for uninterupted production |

#### Comments:

- initial luminosity is 8x design
- average store luminosity is ~2x design (good stores)
- luminosity lifetime is dominated by IBS and beam–beam (no collision beam lifetime about 20 hours)
- time between fills has large variations (0.5 to 12 hours)

# Run- 4 improvements: luminosity

- Better optics model
- Orbit correction after each ramp
- Flexible bunch patterns
  (almost all bunch numbers between 3 and 111, arbitrarily distributed)
- Better instrumentation (IPM, Schottky, PLL tune meter, BPMs still in progress)
- Low order nonlinear IR correction finished
- Continuous Gap Cleaning
- Better background reduction
  - Shielding for Phenix and Brahms
  - Horizontal 2–stage collimation in both rings
- Faster beginning-of-store activities
  - Automatic steering for all experiments ~5min
  - Automatic collimator settings (optimization still in progress)

## **New Collimation System**



Steering and motion of collimators (total of 18 motion channels!) automated by feedback based on signals from PinDiodes (loss monitors).

Status: collimators installed, software development done, optimization in progress

#### New Collimator Performance



Reduction is in the order of x10 (have seen even better :)) times achieved: ~3 minutes working on feedback using exp. background signals

#### **Flexible Bunch Patterns**



Use a combination of 60-bunch and 120-bunch fill patterns by injecting bunches into  $3^{rd}$  and  $6^{th}$  buckets. Total number of bunches is: 55 < 68 < 110 Increase is 20%

## Gap Cleaning Performance



### Automatic Steering (with LISA)



Timescale: ~ 5 minutes, maintaines optimum rates for experiments

# Run- 4 improvements: time in store

- More efficient operation
  - Faster down ramps
  - Faster quench recovery (refrigerator)
  - Higher loss limits on ramp (fewer ramps aborted)
  - Fast access from home (more analysis power available)
  - Phobos magnet controlled by Sequencer/MCR
- Increased reliability
  - AtR, starved microbes in cooling water
  - Much reduced ice ball maintenance
  - Corrector power supplies

## **FY04 Improvements and Status**

- Collimation system upgrade and feedback (-> done)
- Upgraded gap cleaning technique (-> done)
- Shielding @ BRAHMS and PHENIX (-> done)
- flexible bunch pattern (-> done)
- online modelling, "bump" closure (-> done)
- Vacuum (-> part. done)
- Automated Luminosity Steering (LISA) (-> done)
- BPMs (reliability), Instrumentation (-> part. done)
- Hardware changes to reduce recovery and maintenance (quench protection, ice balls, fast down ramps) (-> done)
- Faster/more user friendly operations tools (ramp analysis, more automation) (-> done)

# Luminosity limitations

- Vacuum
  - Yellow stochastic cooling kicker yo4, now baked
  - Blue collimators bi8
  - Blue instrumentation section bo2
- Intrabeam scattering
  - At injection:
    - Longitudinal emittance increase
    - Debunching
  - At store:
    - Debunching
    - Transverse emittance increase
- Beam–beam interaction
- Background

Luminosity lifetime: ~2.5hrs
Beam lifetime without collisions: ~20 hrs

# Summary

- Run–4 start–up and ramp–up period one week shorter than planned
- Current gold—gold luminosity is about 2x higher than at end of last gold—gold run (instantaneous, per store and per week)
- Most improvements for gold–gold operation will also benefit polarized proton operation